فى القرن الحادى والعشرين
مع تركيز خاص على  التعليم التقنى
نحو مشروع قومى للنهوض بالتعليم الفنى والتقنى والهندسى
فى القرن الحادى والعشرين
مع تركيز خاص على  التعليم التقنى
Duration— A 9-Days Modular Seminar, With Four Offerings to Select From
Location:   One of Khartoum's Seminar Halls (Ample Time Notification Later)

مقدم السمنار
بروفسير د. د. محمد  الرشيد قريش
Ph.D. in Hydrology & Water Resources, with Minor in Civil Engineering (Hydraulics)                         
University of Minnesota
Ph.D. in Transportation & Industrial Systems Engineering—Columbia University
(& M. I. T's Flight Transport Laboratory)
M. Phil. in Industrial Economics & Development Planning—Columbia Univ.
M.B.A. in Operations Research & Economics--Utah S. Univ.
B.Sc. in Ag. Engineering (Power & Machinery)-California S. Univ. (& U. of K.)
Intermediate Science (Mathematics)—Univ. of Khartoum
A Diploma in Air Transport—M.I.T
A Diploma in Science, Technology & Development --Cornel Univ.
C.E., S.M.A.I.I.E., S.M.S. M.E., M.A.S.C.E., M.A.I.A.A., M.C.I.T., M.A.S.Q.C., M.T.I.MS., A.M.A.S.A.E.
FELLOW M.I.T. Centre for Advanced Engineering Study, 1978
FELLOW (Sudan's) Engineering Society
Former CONSULTANT to UNESCO & UN-ESCWA
Former Engineering Associate Professor at American & Saudi Universities

Who Should Attend
    عمداء كليات الهندسة وأعضاء هيئة التدريس فيها
    عمداء الكليات التقنية وأعضاء هيئة التدريس فيها
    عمداء المعا هد الفنية وأعضاء هيئة التدريس فيها
    Engineers, Architects, Urban Planners, Technologists & Technicians
    Senior Personnel Who Have the Overall Responsibility Higher & General Education
    Planners & Directors with Policy Responsibilities
    Academics, Research Scholars & Post-graduate Students
    الصحف اليومية
    Education Consultants,
    Entrepreneurs, Education Fund Securers and Investors (البنوك )
    All Those Who Are interested in Technical Education




Seminar Contents

Module One: Duration-- One Day

1.    التخطيط  للتعليم الفنى والهندسى:
•       ضروريات  التخطيط العلمى والمنهجى
•      التخطيط المبنى على الطلب والتخطيط المبنى على العطاء

2.      ربط أهداف التعليم  الفنى والتقنى  والهندسى  بأغراض  التنمية

3.      تعريف المنهج الهندسى  والتفريق بينه وبين  منهج العلوم الطبيعية:
•    دور السلطة التعليمية والسلطة  المهنية والمسئولية الشخصية) سلطة الضمير) فى
المعا رف الهندسية
•        كيف يعالج المهندس المعضلات الهندسية

4.        التحديات التى تواجه التعليم الفنى والهندسى والتقنى:-
•    التحدي التكنولوجى           
•    تحدى ثورة البرمجيات و  تفشى الكمبيوتر والثورة المعلوماتية
•     الجيل القادم من إقتصاد التصنيع  NGME))     Next Generation manufacturing Economy   
•    الهندسة المتزامنة Concurrent Engineering
•    عودة التنظيم الادارى المصفوفى  Matrix Management
•    الشركات المتناسخة Fractal companies
•    إقتصاد المعرفة  Knowledge Economy
•    التحدى الذ ى يمثله  تقادم البنيات التحتية وتآكل رأس المال الثابت
•    أزمة التصنيع والانتاج
•    فجوة التصنيع الهندسى
•    فجوة المواد عابرة التخصصات       Interdisciplinary Studies
•    التحدى الذى يمثله  تدريس التصميم والصيانة  واعمال الانشاء  وغيرها  من معارف الدراسة التقنية  التى لا يمكن           صياغتها فى قوانين الهندسة
•    التحدى الذى  يمثله تآكل وخبرات المهنيين  وتخلفها عن مواكبة  تطورات المهنة        Skill Obsolescence   
•    التحدى المتمثل فى التعليم المستمر

Module Two: Duration—Three Days :

5.    المراجعة الاستراتيجية للحالة الراهنة للتعليم الفنى  والتقنى والهندسى

•    واقع التعليم الفنى  والتقنى والهندسى
•    مشكلات  التعليم الفنى  والتقنى
•    ميكانزم الفشل
•    اسباب الفشل
•    الفرق بين اعمال المخيلة  الهندسية   “Making “  والاعمال الفنية التنفيذية “ “ Doing
•    ضبابية  الرؤيا حول التفريق بين المناشط الهندسية  المختلفة:
◊    "العمال المهرة Craftsmen or  Artisans (C)"
◊    "والتقنيون—أو فني الهندسة--" و" والمهنيون"—(T)   Technicians
◊    والمهندسون التقنيون   (ET)"Engineering Technologists
◊    "والمهندسون—(DE/RE)  Design or Research Engineers "
•    المشكلات المترتبة  عن عدم وضوح الرؤيا حول التعليم الفنى والتقنى

6. Manpower Resources: لمقابلة أحتياجات التنميةللكوادر لمطلوبا التأهيلو
    1995 – 1996  % Distribution of Students
    Education vs. Training
    The Need for a Dual Stream Differential Education & Training Curriculum:         
    The Concept of a Niche
    Job Descriptions
◊    Assigning Planning to DEs & Execution to ETs
◊    Technological Gatekeepers
◊    An Example of ET Job Descriptions
    Examples of Job Descriptions for System Analyst As An  Engineering Technologists (ET)
    Examples of Ranges of Job Descriptions for Highway Engineering Technologist (ET)
    Examples of Ranges of Job Descriptions for Manufacturing Engineering Technologists (ET)
    Medical & Clinical Lab Technologists Job Description
    Nuclear Medicine Technologist Job Specs
    Systems Programmers: (Technologists
    Computer Programmers: (Technologists) Job Specs
◊    The Technician , T—Job Descriptions/Specifications
    Some Typical Craftsmen “C” Job Descriptions & Training Requirements
    Heuristics vs. Algorithms--A Definition
◊    Variation of Use of Algorithms (A) & Heuristics (H)
With Problem Structure
    Hierarchy of Information Functional Intelligence

    Distinguishing Between:
    "المهندسون))  Design or Research Engineers (DE/RE)
    (المهندسون التقنيون)   Engineering Technologists (ET) &
    "التقنيون—أو فني الهندسة))   Technicians (T)

•    المقارنة بين"العمال المهرة"" و " والتقنيين أو فني الهندسة"والمهندسين التقنيين "  والمهندسين " في: 
مدة الدراسة
طبيعة التعليم ومكانه
تأهيل الاساتذة  وتعليمهم
الدور المهنى
التوصيف الوظيفى ، مع امثلة للوظاف
التركيبة النفسية وا لاستعداد الفطرى Personality  type
الحوافز Motivational  factor
الاهداف التعليمية
القدرة على التصميم الهندسى
نوع المعضلة الهندسة التى يتصدون لها
نوع المعلومات التى يستخدمونها
تصورهم لدورهم  فى حل  المعضلات Perception of Problem Solution
تصميم المناهج ونوعها
حجم الجرعة المطلوبة  لكل منهم من" الرياضيات" " والعلوم الطبيعية" " والعلوم الهندسية" " وتطبيقات الهندسة"
تفصيل الكورسات فى كل جرعة
اهداف المعامل ومتطلباتها
نوع اللجان الاستشارية للبرامج
دورهم فى تقدم المعرفة الهندسية

    Why is the Need for Differentiation Between Engineers, Engineering Technologists, Technicians & Craftsmen?
◊    Niche-wise Streams: Benefits Accruing from Clearly-defined Professional Engineering Niches:
◊    The Consequences of the Ill-definition of Various Professional Engineering Niches—The Engineering Technology Gap
    How the Professional Specialties of “Engineering” and Engineering Technology Veered Out of Control:
◊    The Three Knowledge (or Skills) Bases
◊    الزوجية هي سنة الكون
    Comparative Formation & Task Analysis for the Engineering & Technology Professionals
◊    The Designers of Change: The Design/Research Engineer Character Formation
◊    Information Technology Gatekeepers
◊    Heuristics vs. Algorithms--A Definition
◊    Math, Physics & Chemistry  for the Engineering Technologists (ET)
◊    Comparison of Working Environment & Requirements of Various Professional Engineering Practitioners:
◊    Differences Partly Explained In Terms of Three Key Behavioral Processes:
    Learning
    Motivation
    Perception &
    Design/Research Engineer Character Formation
    Differences Between DE/RE & ET Explained in Terms of Course:
◊    Content
◊     Depth
◊     Breadth
◊     Range, &
◊     Level
    Distinguishing  Between Learning, Education & Training
The Learning Process
    Differences  Between DE/RE , ET , T & C Explained In Terms of Certification
    Differences  Between DE/RE , ET , T & C Explained In Terms of Course Duration
    Differences  Between DE/RE , ET , T & C Explained In Terms of
    Faculty/ Trainers Technical Credentials
    Faculty/ Trainers -- The Heart of all Educational & Training Programs
    Faculty Assignment by Department (FAD)
    Judging Overall  DE/RE Faculty Technical Competence
    ET—The Backbone of Engineering Activities
    The Engineering Technologist Education
    Differences  Between DE/RE , ET , T & C Explained In Terms of
Nature of The Instructor’s Teaching Style (& How He Views
Knowledge) & His Focus
    Differences  Between DE/RE , ET , T Explained In Terms of Role As A Group
    Differences Explained In Terms of Job Specifications
    Differences Partly Explained In Terms of Epistemic Authority
    The Profession’s Three Formative & Regulatory Authorities
    The Epistemic Authority
    Sources of Engineering Knowledge at the Epistemic Level
    The Deontic Authority
    Power of State to Regulate Professionals
    Differences Explained In Terms of Engineering Applications
Load
    Differences Explained In Terms of Capacity for Synthesis & Design—The  Key Distinguishing Feature of Engineers
    Differences Explained In Terms of Design Courses Load
    Two Ways of Looking at Engineering Design
    The Relative Dose of Scientific Principles, Financial Principles & Manpower Utilization  in Various Engineering Functions
    The Capstone Courses
    Typical Major Architectural Engineering Courses
(As Compared to C.E).
    Differences Explained In Terms of Hierarchy of Functions
    Differences Explained In Terms of Examples of Tasks for Each from Electronics Designs
◊    Programmable (Logic ) Controller, PLC
◊    Distributed Control System (DCS)
◊    Examples of Design Assignments for Engineering Technologists (ET)
◊    لماذا التعليم الهندسي الجامعي مأزوم؟ IV
    The Dynamics of Engineering & Technology Curricula
    The Changing Nature of the Engineering Curriculum
    Differences Explained In Terms of Computer Science Load
    Some of The Specific Computer Competencies Expected of Engineers
    Computer Education & Training Needs
◊    Training the IT Professionals
    What Does Society Expect from its Graduate Scientists, Engineers & Technologist etc. ?
    The Generic Engineering Functions (or Tasks)
    The Manufacturing Engineering Gap
◊    The Consequences of Omission of Manufacturing Engineering
◊    Manufacturing Engineering as Linkage Function
◊    The Manufacturing Engineering Gap in MDCs
    The Next Generation  Manufacturing Economy (NGME)
    The Critical Role of the “Manufacturing” Engineer
◊    Backward & Forward Linkages
◊    Strategic Linkages Industries for the Old Economy
    The Theory of Institution Building
    Strategic Linkages Industries for the Old Economy
    Curricular Architectonics
    Curricular Architectonics—A Total  Quality System Perspective
    The Educational Challenge
◊    The educational System Represented As An Input-Output Transformation:

Module Three: Duration—Three Days :

    Obsolescence—An  Engineering “Fault”
    The Nature of the Knowledge Depletion Problem:
    An Engineer’s Skill Obsolescence & Life Cycle Model
    Tying Training Strategies to Engineer’s Skill Obsolescence & Life Cycle
    Skills & Knowledge Needed at Various Stages of The Engineers Career
    The Correspondence Between Commercial Firm’s Environment
& Technology Institute /Engineering School Environment
    Re-engineering the Technology Education Institutes
    How To Influence Demand-
◊    The Visual Formation Flight--The Eng. Technologist’s Responsibility for Others’
◊    Production Gangs” A Model  from Railroads & Industry
◊    Pecking Order” --A Model  from the Birds
◊    Business Model For a New Technology Education Paradigm
--A Bold Move Away from Organization’s Current Functional Viewpoint
    The Supply Chain Paradigm
    Implementation of the Supply Chain Paradigm to Technology Education
    Supply Chain Mechanisms

7.    إعادة هيكلة التعليم الفنى  والتقنى والهندسى
•    كيف نؤثر على العطاء والطلب للتعليم  الفنى والتقنىوالهندسى
•    كيفية تجسير الفجوة  بين تقنية التعليم الهندسى  وبيئة العمل الفنى والتقنى والهندسى
•    نحو منهجية جديدة  لتدريس  العلوم التقنية والهندسية

نموذج التصميم والصيانة والمعاير الهندسى
نموذج الهندسة العكسية Reverse Engineering Module
نموذج الهندسة الشرعية Forensic Engineering
نموذج الهندسة القييمية Value Engineering
نموذج  تهجير المعارف من تخصص الى آخر Cross fertilization Module
نموذج دوائر الجودة  Quality Circle Module
نموذج استخدام  اجهزة  المحاكاة الصناعية  فى التدريب  Industrial  Training  Simulation Module


Module Four: Duration—Two Days-- Recommendations :

7.    نماذج  لتنظيمات  جديدة الكورسات:
•    نموذج  الكهروميكانيكا  Mechatronics
•    نموذج  التصميم والضبط  المدمجين Combined Design  & Control  Module
•    نموذج هندسة النقل Transportation Engineering Module
•    نموذج هندسة المواد  Material Engineering Module
•    نموذج البديل الجذرى  للتخصصات الهندسية  التقليدية

8.    إعادة هيكلة التعليم التقنى والفنى -  بدائل تنظيمية : -

•    النماذج  التنظيمية التى  يمكن الاستعارة منها فى اعادة  تشكيل التعليم الفنى والتقنى
•    عرض نماذج  التعليم التقنى فى الدول الاوربية والامريكية
نموذج كلية غردون التذكارية واين تلتقى كلية غردون التذكارية  مع التعليم التقنى
نموذج الهندسة العسكرية (الانجليزية) واين تلتقى الهندسة العسكرية مع التعليم التقنى
نموذج كلية الطب الامريكية
نموذج كلية القانون الامريكية

9.    تطوير المناهج للتعليم الفنى والتقنى والهندسى:

10.    مساهمة المهنسيين التقنيين فى تدريب"العمال المهرة" " وقني الهندسة "و " التقنيين"

11.     المراجعة والتقييم للمناهج  Program Review &  Evaluation

12.    الأعتراف العلمي ببرامج التعليم الفني والتقني  Program Accreditatation

13.    التسجيل المهني  Professional Certification  v. s. Registration

14.    التوصيات

15.    خاتمة





////////////

One Countrry, Two Systems:
Re-Structuring the Technology and Engineering Education—A Program of Action for Meeting the Challeges of the 21st Century

By

Professor M. E. Goreish

B.Sc.(California. S. U.); M.B.A.(O.R.) [Utah S. U.];
M.Phil. (Coliumbia U.) ;
Ph.D.(Columbia U.); Ph.D.(U. of Minnesota)
Diploma Science,Technology & Development (Cornel. U.)
Diploma Air Transport (M.I.T)



Table of Contents

CHAPTER ONE

Definition of Engineering
    Who is an Engineer?
    Science vs. Engineering Science
    Engineering and Problem-Solving
    The General Engineering Approach to Problem-Solving
    How Do Engineers Solve Problems
    Problem–Solving Skills to Be Developed In Engineering Students-- the Katz's Three Skill-Utilization Model:
o    Technical (Professional) Skills
o    Conceptual Skills
o    Human Skills/Professional Attitudes
    Group Learning/ Group Problem – solving / Group Teaching:
    Techniques of Problem Solving
    Types of  (or Approaches to ) Problem Solution:
o    Analytical (Mathematical Analysis) Solutions
o    Numerical Solutions
o    The Experimental Solutions 
o    Simulation: When and Why Do We Simulate?
o    The Information Problem
o    The Cost Problem
o    The Design Problem
    Sources of Knowledge for Engineers
o    Science-based Theories
o    An analytical approach
o    Virtual Experiences
o    Experimentation

    The Three Types of Knowledge Bases:
o    Scientific Knowledge or Skills (Sc)
o    Technological or Experimental Knowledge or Skills (Tech)
o    Vocational (Empirical) Knowledge  or Skills (Vo)
    Theory vs. Empiricism
    Choice (Distinction) between Doing (“Institutional Left”, as in ET,VO) and Making (Institutional Right, as in DE/RE):
    Experiential Knowledge
    Learning Methods /Strategies
o    Instruction / Lecture Mode
o    Inquiry Mode
o    The Case Method


CHAPTER TWO

Professional Challenges---Drivers of Change in the Engineering & Technology Professions:

I. Technological Challenges:

    The Convergence of Telecommunications, Computers and Microelectronics
    The Accelerating Pace of Technological Change:      
    Skill Obsolescence:
    The Knowledge Economy:
    The Next Generation Manufacturing (NGM) Economy,

II. Organizational Challenges:

    Market Globalization
    Environmental Responsibilities
    The Fractal Company

III. Resource Limitations---Depletion of the Minerals Resource Base As An Example:
    The Challenges of an Approaching Era of Material Shortages.
o    The Geological Cycle
    The plate techtonic sub-cycle
    The biochemical cycles,
    The micronutrient cycle (e.g. copper etc)
o    The Rock Cycle which recycles rocks and minerals

IV. The Re-Emergence of  the "Matrix Management"

V.  The Management and Regulation of Technological Flow: -
The characteristically rapidly-changing, though unsteady, non-

CHAPTER THREE

Educational Challenges---Critical Issues Driving the Educational Needs of Engineers & Technologist.

I. The Physical Infrastructure Crisis
    Impediments to Rehabilitation Training

II. The Production Crisis

III. Approaches to Problem Solving:--Bridging The Interdisciplinary “Ectone” Gap:     
    Deficiencies of the Traditional Disciplinary Approach: The Compartmentalized Perspective:
    Rectifying the Deficiencies of Traditional Disciplinary Approach to Engineering   and Technology Education
o    A Pluri-disciplinary   Approach
o    The Crossdisciplinary Approach
o    Tran-disciplinary Approach
o    A Multidisciplinary Approach
o      Interdisciplinary (Interfacial) Approach

IV. Mechatronics— the Convergence of Mechanical and
Electronic Technologies:

V. Ubiquitous computers and global communication systems:
    Computers Role as an Integral Component of the Teaching & Research Effort
o    Computers Assumption of  Tedious & Repetitive Calculations     
o    Computer Software (Systems) Development generating uniformity Computer Use as an "EXPERT TUTOR
o    Computer Use as Instructional "Black Board", or for E-mail.
o     The Use of computers as a Laboratory Instrument
o    The Explosive Nature of Cartographic (Map) /GIS Applications of Satellite Technology
VI. The Challenges Associated with other New Engineering Fields & Techniques
    The Industrial Training Simulator Module--Opportunities and Challenges:
o    Flight Simulators
o    Power Plant Electric Utility Simulator Training
o    Maintenance Trainers
o    Train Driving Simulators
o    Factors Favoring Use of Simulators
o    Some Ways in Which Simulation Can be Used

VII. Changes in Engineering Curriculum
    The Finite  Element  Method

VIII. Risk and Reliability: Probabilistic and Statistical Approach to Engineering Design
    Typical Risks Facing the Engineering:
    Deficiencies of the Deterministic (Design and Analysis) Method in Addressing Risks
    Why Go Probabilistic – the Need for More Precise Assessment of Real Capabilities of Complex Systems
    Fatigue Loads-- Engineering Elements Under the Effect of Dynamic Loading

IX. The Material Crisis
    The Challenges of an Approaching Era of Material Shortages.
    Why Study Materials
    Material Science and Engineering
    Material Science 
    Material Engineering: 
    Energy-Related Materials:
    Information-Related Materials
    Where Material Scientists/Engineers Can be Employed
    Possible Lab Facilities
    Possible Options
    Possible Courses / Topic



CHAPTER FOUR

The Problem With Engineering Education

    Strategic Audit of the Current Status of Engineering Education:
    Why is the Disappointing Performance of Engineering Education Institutions?
o    Failure Mechanism – Etiology for the Engineering Education Crisis
    The absence of formal planning mechanism for Engineering
    Education
    The Faculty Crisis
    Rigid and Outdated Curriculum
    Structural Errors in Curriculum Selection
o    Engineering Failures / Malfunction Module
o    Failure Modes (Symptoms)
o    Failure Analysis:
o    Failure Modes In Engineering Education & Training

    Dubious Models And How Engineering Knowledge is Won and Lost
    The Gap Between Theory & Practice: The Mismatch between Course Material and the Real-world
    Critical Omissions in Engineering Curriculum-- The (Generic Engineering) Innovation and Credibility Gap
    Unamenability- of the Generic Engineering Skills to Teaching by Current Educational Methods
    Bridging the Manufacturing Engineering Gap:
    The Consequences of Omission of Manufacturing Engineering



CHAPTER FIVE

The Crisis Within Technology Education

      Strategic Audit of the Current Status of Technology Education:
    The Consequences of the Ill-definition of Various Professional Engineering Niches:
    The ET Gap --- How the Professional Specialty of "Engineering Technology" Veered Out of Control
    The Faculty Crisis

CHAPTER SIX

Restructuring the Engineering & Technology Education--Linking (the Goals of) Engineering and Technology Education with National Socio-Economic Development:

    The Role of Engineers & Technologists in Development—What Does A Country Expect from His Engineers & technologists?

    Economic Development:
o    The New Classical (Cobb- Douglass) Model of Economic Growth (Development)
o    The Political Economy of the Capital Output Ratio
o    Development as the Result of Convergence of Simultaneously Acting Drives in the Country
o    Technological Progress vs. Capital Formation:
o    Economic  Development ( And the Subsets of S & T , R & D & Innovation ) Requisites:
o    The Permissive Factors
o    The Implemental Factors.
o    Capital (or Manpower) De-Formation --The Importance of Capital Goods for the Development and  Reproduction of the Productive System

    The Relationship between LDC’s & MDC’s              
o    The Technology Transfer Model
o    The Modalities of Technology Transfer:
o    Why the Technology Transfer Model is Doomed?

o    A Road Map to Technological Sovereignty—Engineers As Change Agents( Design Engineers or Problem-Solvers, as in Consultants)
o    How Long The Process Takes?
o    The Law of Outlays of R & D
o    The Innovation Chain -- Research, Development  And  Engineering (R, D & E)
o    Some Definitions
    Pilot Plant
    Prototype
    Scale Model


o    Impediments to an Accelerated Innovation Chain
o    How do We Accelerate the Pace of Technological Innovations?--Lessons from the East & the West
    Decoupling R from D in the “R&D Train”--Some Definitions
    The Rise and Fall of the USSR Scientific Empire--- or
    How We Organize and Finance Research vis-à-vis Production Has Crucial Consequences 
    The Consequences Decoupling of R&D from Production Comes to Haunt the USSR:
    The Meiji Restoration in Japan and Science and Technology  Development:
    The Characteristics of Japanese Research Model
    How Hungary Dropped Basic Science and Suffered :Decoupling R1 (Basic Research / Science) From R2 (Applied Research/ Science)--The Experiment of Hungary’s First Socialist Government

    Searching for a Technology Niche:
o    High Technology (Hi Tech)
    Hi-Tech  Characteristics
o    Medium-Technology
o    Low Technology (Using Comparatively Little Scientific Training

CHAPTER SEVEN

Restructuring the Engineering & Technology Education--Planning for Engineering & Technology Education

    Implicit vs. Formal Planning in Engineering and Technology Education
    The Planning Horizons:
o    Strategic Planning
o    The Nature of Strategic Planning. (SP)
    Environment Scanning (E-Scan)
    Developing a Capability Profile (CP)
    Establishing priorities
    Synthesis of Demand-Oriented and Supply-Oriented Planning
o    Intermediate Planning
o    Operational Planning
    Supply-Oriented Planning:
    Need for Strategic Audit
    Game Plan
CHAPTER EIGHT

Restructuring the Engineering Education Through New Modules for Courses

    Alternatives to New Designs Module 1 – Value Engineering  (VE) Module
    Why the Development of Indigenous Designing Capacity?
    A Combined Design and Control Module
    A Combined Mechatronics (Mechanical-Electrical) Module
    A Material Engineering Module
    An O & M Technology Module
    The Quality Circles Module
    Failure – Experience Matrix
o    A Design EXPERT System Module
o    Failure Mode, Effects and Criticality Analysis (FMECA)
o    Fault Tree Analysis (FTA) Sub-Module
    Reverse Engineering---Learning Design Through a “Divide - &- Conquer” Strategy  
o    Manufacture Engineering)/Design vs. Reverse Engineering / Design
o    The Reverse Engineering /Technology Module
o    Reverse Engineering, Ideology and International Relations
    Forensic Engineering For Teaching Maintenance and Learning Engineering Design
•    Forensic Examinations
•    Autopsies as an Investigatory, Teaching and Research Tool
•    The Clinical –Pathological Conference Module
•    The Forensic Engineering Module:
•    Forensic Engineering  and the Use of the  "Autopsies Module" in  "Failures Analysis"
•    Forensic Engineering Steps–A Potentials Material  for an EXPERT System Development
    A Transportation Engineering Interdisciplinary Module
    An Energy Module
    Generic Clusters Module – Promoting Tran-disciplinarily As a Remedy to the Deficiencies of the Traditional Disciplinary Approach
    EXPERT Systems (ES) Module :
•    Artificial Intelligence (AI)



CHAPTER NINE

Restructuring the Engineering Education Through Curriculum Reforms

o    Curriculum Objectives
o    Utility
o    Training vs. Education
o    Curriculum Improvements
o    New Curriculum /Syllabuses Designs
o    Curriculum Modular Design – Exploring Novel Didactic Approaches
o    The Question of Curriculum Architectonics – the Katz's Three Skill-Utilization Model:
    Technical Skills :
    Conceptual Skills
    Human Skills :-
    Curriculum Development--The Use of College Consortium to Develop Engineering Instructional Materials
    Steps to Curriculum Development System:
o    Suggested  New Organization for Courses:
    Material Technology—
I.    Why Materials Shortage Crisis?
II.    How Can Engineering Mitigate Problems of Materials Scarcity:
III.    How Electronic Materials Can Mitigate Problems of Materials Scarcity
o    Selection and Structures:
o    Other Pedagogical Constructs :
    Relevance
    Balance
    Contingency vs. Congruence:
o    Structural Validity of Curriculum
Criteria for Evaluating Curriculum Content


CHAPTER TEN

Restructuring the Engineering Education Through Program Review  Reforms
    Program Evaluation
o    A Model Representing the Essential Requirements (Components) of Engineering Technology  Professionalization Process:
    Epistemic Authority (Exercised by Educational Institutions):
    Deontic Authority (Exercised by the State):
    Professional Commitments (Personally Exercised)
    Accreditation as the Formal Form of Curriculum Evaluation:
I.    The Players
II.    Accreditation Objectives
III.    Who Accredits the Accrediting Agency?
IV.    Who Actually Performs the Curriculum Review?
V.    Criticism of the Accreditation Process—And Its Cost
VI.    Types of Higher Education Accreditors in the USA
VII.    The Regionals
VIII.    The Specialized (or Occupational Accreditor) Group--- 75 of them in the US
    Program of Engineering Certification
    Continued Education (Policies)
    Libraries


CHAPTER ELEVEN

Restructuring the Engineering Education Through Attitudinal & Professional  Cooperative Reforms

    Cross Fertilization – Promoting Cross-disciplinary Knowledge Migration
o    Outreach – Causeway Across Disciplines
o    The Cross-disciplinary Approach
    Harnessing Commonalities--
o    Similitude: Mathematical Homology & Isomorphic Mapping
o    Common Manufacturing Defects, Due to Purchase from Common Manufacturing Source.
o    The Common Knowledge Base Between (Computational) Aerodynamic, Gas-dynamics and Hydrodynamics
o    The Shared Experiences of Sand Dunes Stabilization:
o    Operation and Maintenance (O&M) Technology?
o    The Horizontal Transfer: of Re-habitation Experiences (e.g. of Power Plants)
o    The Horizontal Transfer: of Analytical Skills Associated with Hydrologic and Hydraulic Problems of Storm-Runoff Control
    Operations and Maintenance Technology
o    Complexity of the O&M Technology
o    O & M System Pathology – Operational Failure Severity States
o    Operations Technology--Turning a Vicious Circle Into a Virtuous Circle
o    Rehabilitation Policy Options


CHAPTER TWELVE

Restructuring the Technology Education ---Drawing Lessons From Successful Technology Education Models:

The Gordon Memorial College Model--A Journey by H. G. Wells Time Machine;
o    Gordon Memorial College Landmarks
o    Gordon Memorial College--1930 Hydraulics Course Syllabus
o    The Engineering Career of a Gordon Memorial College Graduate

The Military Engineering Model:
o    Of Plowshares and Swords-- Horizontal Technology Transfer from Military Technology to Civilian Sectors
o    Imitative Innovations:
o    Derivative (Analogous) Innovations
o    Challenges (& Novel Engineering Problems Military Engineers Face) That Require Considerable Ingenuity for Their Solutions
o    The Important Role Played by Rivers and Dams in Warfare
o    Historical Cases of Hydraulic Warfare
o    What Can the Civil Engineer Offer in Return?
o    The Military Engineer (Technologist) vs. Research/Design) Civil Engineer
o    The British “Royal Engineer Officer” Course of Study--Subjects covered:





CHAPTER THIRTEEN

Re-Organizational Reforms—Drawing Lessons From Other Professions

    The Medicine Modules
    The Law Modules



CHAPTER FOURTEEN
    Restructuring the Engineering Technology  Education--- Bridging the Gap between General (Academic) Education and Vocational Training
o    Key Players Shaping Up the Technological Educational System
o    The Need for a Dual Stream Differential  Training Curriculum
o    Nichwise Streams: Benefits Accruing from Clearly-defied Professional Engineering Niches
o    How to Influence Supply for Knowledge and Skills
o    How to Influence Demand for Knowledge and Skills
o    Policy Reform and Innovation
o    Herzberg’s “Two- Factor” Theory of Motivations
o    The Expectancy Theory  of  Motivation
A Pivotal Role for Engineering Technologists in the Training of  Paraprofession


CHAPTER FIFTEEN

Restructuring the Engineering Technology Education Through New Modules for Courses

    Operations and Maintenance Technology
o    Complexity of the O&M Technology
o    O & M System Pathology – Operational Failure Severity States
o    Operations Technology--Turning a Vicious Circle Into a Virtuous Circle
o    Rehabilitation Policy Options
o    The O & M Technology Module



CHAPTER SIXTEEN
The R & D Sector


Appendix 1
Appendix 2

Engineering Projects Completed by 3 Engineering Graduates of Gordon Memorial College up to 1966
(1966-1990 not included)

(A) Government Gravity Schemes

(B)Government Pump Schemes.

(C)Private Pump Schemes.

Other Engineering Projects not Included in the Above lists.

Irrigation Projects Filure Mechanisms

Small-Scale vs. Full-Scale Models

    Full Scale Models:
    (Small) Scale Model Experimentation

A Proposal for the Establishment of an Experimental Station
to Start as Part of  the National Central Laboratory:
المعمل المركزي—مجموعة من المعامل تابعة  للأكاديمية كما كان الحال في الأتحاد السوفيتي
I – Some Types of Scale Models:
    Toy Scale Models
    Architectural Scale Models--some with high “fidelity”
    Aeronautical Scale Models, as used with “Wind Tunnels”
    Hydraulic Scale Models.
    (Chemical) Process Systems Scale Models e.g.
o    Mini Plants
o    Pilot Plants
o    Jumbo Plants etc.
    Meteorological Scale Models
    Naval Architecture Scale Models
     Acoustical Scale Models,

II. Why Need to Use Scale Models:

Aerodynamic Scale Models—The Knowledge Gap and The Boundary Layer (B.L.) Theory:

What Questions the Use of  Small-Scale Models Can Answer For (Hydraulic, Architectural, Meteorological and Chemical Process) Researchers?

Wind Engineering Research: The Use of Scale Models  with Low-Speed
Wind Tunnels

Hydraulic Engineering Research: The Use of Small –Scale Models for Fundamental Research or to Solve Local Hydraulic Problems

Typical Research Problems to be Investigated

Chemical Processes Engineering Research and the Use of Scale Models:
Typical Scale- up Ratio  (= Commercial Production Rate /Pilot Unit Production Rate)

Scale-up Problems of Chemical Processes in Moving From Small-Scale to Commercial Size :

Concrete and Soils Quality Control Research Lab

    Soil Mechanics Section:

    Cement and Concrete Section:

    Silt Investigation Section:

    On-site Quality Control of Construction Materials Section:

    On-Site Construction Logistics




List of Tables


Table 1:Comparison Between Science, Engineering Science & Engineering

Table 2:Skills to be Imparted to Engineering Students          

Table 3:    Four  Examples of Curricular  Goals and Objectives

Table 4:Science and Technology Example:

Table5:The Direct Problem:  )  Algorithm    ( المهندس التقني يستعمل ال

Table 6:The In-Direct Problem:  )  Heuristics    ( المهندس يستعمل ال

Table 7: Problems Arising With Systems

Table 8:MCOR and K/O Ratio Data for Various LDCs (1950 – 1965)

Table 9:K-O Ratio

Table 10:Productive Investments vs. (“Nonproductive”) Investments,

Table 11:Rostow’s Take-off Development Model

Table 12:The Postindustrial Society: A Comparative Schema

Table 13:Correspondence to DE/RE, ET,  & T—How the 3 Engineering
Specialties :كلامي…Approximate the Temporal Stages of Technological 
Development

Table 14:The (1971) Distribution of Scientific Workers in the USSR by
Fields(
Table 15: Soviet Technology

Table 16:Japanese Research  & scientific Communities

Table 17: The Innovation Chain Stages & Typical Relative Costs

Table 18:The Innovation Chain

Table 18: (Average)  Application Lag in COMECON Countries:

Table 19:Computer Technologies

Table 20:     Factors Favoring Use of Simulators

Table 21:Classification of Mathematical Problems & Their Ease of Solution
by Analytical

Table:22      Ranking of Arab States “Ph.D. Graduate Students-Professors” Ratio

Table 23:1995-96 Distribution  of  M.Sc. & Ph.D. Graduate Students-Professors Ratio

Table 24:Failure Catalogue: An Environmental Profile of Engineering School Milieu:vs. Professional Life Milieu:

Table 25:        Ranking of Arab States (In Descending Order)
1996 % Distribution of Higher Education Students/100,000 population

Table 26:Ranking of (Governmental and Non-Govermental) Expenditureon Technical Institutes As % of Expenditure on Universities

Table 27:1995-96 % B.Sc. Distribution of Students:Sudan vs. Algiers

Table 28:1996 % Distribution of Technical Institutes by Degree Level
& Higher Diploma

Table 29:1995-96 Distribution of Technical Institutes Students

Table 30:1971-72 Regional  Maldistributionالتنمية غير التوازنة
Table 31:Technicians-to-“Scientists  & Engineers” Ratio

Summary Table 32:

Table 33:Product Engineer vs. Manufacturing Engineer vs.  Production  Engineer/ Production worker

Table 34:The Shrinking of the Innovation Chain

Table 35:  The Shrinking of the Innovation chain

Table 36: The Shrinking of the Innovation Chain

Table 37:The Shrinking of the Innovation chain

Table 38: Engineering and Technology Graduates ---The Generic Engineering  Functions (Tasks)

Table 39:Education, Training & Research Needs for Infrastructure, Maintenance & Rehabilitation.

Table  40:

Table 41:% Composition by Wight for 3 Aircrafts.

Table 42:Some Strategic/ Critical Materials

Table  43:Approaches to problem solving:

Table 44:  The Plant Engineer's (PE) Skill Requirements

Table 45: Goals of Engineers in the Continuing Education

Table 46:(Partial) FMECA for a Sprinkler

Table 47:Some Classical Examples of  Horizontal Transfer Of Knowledge

Table 49:Typical Forensic Decision Tree

Table 50:"Safe-life" and "Fail –safe" Design Examples:
Table 51:Software Products and Who Develops Them:

Table 52:The Distinction between Doing and Making:

Table 53:Relative Level of Different Variables Associated with Different Engineering Task:

Table 54: How Civil Engineering Practice Differ from its Military Counterpart:

Table 55: The Mlitary Engineer (technologist) vs. Research/Design) Civil Engineer

Table 56 :Program  Duration: 5 Years Broken Down into 4 Phases:

Table 57:Structural Transformation – Average Annual Growth Rate (%)

Table 58:Contrasting Two Didactic (Teaching) Strategies

Table 59: Comparison Between Continuous and Night Storage Systems

Table 60:Failure Catalogue: An Environmental Profile of Engineering School Milieu vs. Professional Life Milieu

Table 61:Classification of Mathematical Problems & Their Ease of Solution by Analytical

Appendix 1

Appedix 2

Table:

Table:…….     B: % Intramural R&D Expenditure



List of Figures



Figure  : Mathematical Model

Figure:The Generic Engineering Function

Figure:Typical Planning Pyramid for Technical & Technological Education

Figure :Development

Figure :Technological Progress vs. Capital Formation:

Figure :Rostow’s Take-off Development Model

Figure:National R1, R2 & D Deployment (After De Solla Price)

Figure: Technology Acquisition Ladder

Figure :Interfacing Technologies

Figure :The Reverse Engineering /Technology Module

Figure: Wind Mill vs. Aircraft.

Figure :Variation of Use of Algorithms  & Heuristics With Problem Structure

Figure:The Learning Process Learning (an intervening factor between (1) & (2))

Figure :These four concepts are strongly interrelated .Typical such relationships go as follows

Figure:

Figure 1: Knowledge Gap Analytic ( Conservation of Energy/Momentum)  Solution Failure

Figure 1:Knowledge Gap
Figure 2:Knowledge Gap--PDE to evaluate flow has no general solution)